Circumferential Esophageal Replacement by a Tissue-engineered Substitute Using Mesenchymal Stem Cells
نویسندگان
چکیده
Tissue engineering appears promising as an alternative technique for esophageal replacement. Mesenchymal stem cells (MSCs) could be of interest for esophageal regeneration. Evaluation of the ability of an acellular matrix seeded with autologous MSCs to promote tissue remodeling toward an esophageal phenotype after circumferential replacement of the esophagus in a mini pig model. A 3 cm long circumferential replacement of the abdominal esophagus was performed with an MSC-seeded matrix (MSC group, n = 10) versus a matrix alone (control group, n = 10), which has previously been matured into the great omentum. The graft area was covered with an esophageal removable stent. A comparative histological analysis of the graft area after animals were euthanized sequentially is the primary outcome of the study. Histological findings after maturation, overall animal survival, and postoperative morbidity were also compared between groups. At postoperative day 45 (POD 45), a mature squamous epithelium covering the entire surface of the graft area was observed in all the MSC group specimens but in none of the control group before POD 95. Starting at POD 45, desmin positive cells were seen in the graft area in the MSC group but never in the control group. There were no differences between groups in the incidence of surgical complications and postoperative death. In this model, MSCs accelerate the mature re-epitheliazation and early initiation of muscle cell colonization. Further studies will focus on the use of cell tracking tools in order to analyze the becoming of these cells and the mechanisms involved in this tissue regeneration.
منابع مشابه
Circumferential esophageal replacement using a tube-shaped tissue-engineered substitute: An experimental study in minipigs.
BACKGROUND Esophageal replacement by the colon or the stomach for malignant and nonmalignant esophageal diseases exposes to significant morbidity and mortality. In this setting, tissue engineering seems to be a seductive alternative. METHODS In a porcine model, we performed a 5-cm-long circumferential replacement of the cervical esophagus by a tubulized acellular matrix (small intestinal subm...
متن کاملTissue Engineered Scaffolds in Regenerative Medicine
Stem cells are self-renewing cells that can be differentiated into other cell types. Conventional in vitro models for studying stem cells differentiation are usually preformed in two-dimensional (2D) cultures. The design of three-dimensional (3D) in vitro models which ideally are supposed to mimic the in vivo stem cells microenvironment is potentially useful for inducing stem cell derived tissu...
متن کاملGenetically Engineered Mesenchymal Stem Cells Stably Expressing Green Fluorescent Protein
Objective(s) Mesenchymal stem cells (MSCs) are nonhematopoietic stromal cells that are capable of differentiating into and contribute to the regeneration of mesenchymal tissues. Human mesenchymal stem cells (hMSCs) are ideal targets in cell transplantation and tissue engineering. Enhanced green fluorescent protein (EGFP) has been an important reporter gene for gene therapy. The aim of this stu...
متن کاملPlatelet Rich in Growth Factors (PRGF): A Suitable Replacement for Fetal Bovine Serum (FBS) in Mesenchymal Stem Cell Culture
Background: Due to high differentiation potential and self-renewality, Mesenchymal Stem Cells are now widely considered by researchers in several diseases. FBS is used as a supplement in culture media for proliferation, differentiation, and other culture processes of MSCs, which is associated with transmission risk of a variety of infections as well as immune responses. PRGF derived from platel...
متن کاملTGF-Β1 Transduced Mesenchymal Stem Cells Have Profound Modulatory Effects on DCs and T Cells
Background: Mesenchymal stem cells (MSCs) and transforming growth factor-β1 (TGF-β1) molecules are well known for their immunomodulatory properties and their function in tissue regeneration and remodeling. Objectives: To evaluate the interaction of TGF-β1 engineered MSCs with T cells and dendritic cells (DCs) and their modulatory effect on the immune response. Methods: MSCs and DCs were generat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 26 شماره
صفحات -
تاریخ انتشار 2017